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1. INTRODUCTION

In this document, which follows on from pn2511, we explore the theory of res-
onating solenoids in a little more detail. We begin by setting up the integral equa-
tion for the lossy resonator, which leads to an elegant description of the system in
terms of integral operators. The analysis is extended to include a coupled primary
resonator, as well as various types of external feed. We use the integral formulation
to examine the normal mode spectrum of the Tesla coil and demonstrate how the
time domain behaviour can be determined.

Readers should have read pn2511, and will need some familiarity with the use
of linear operators on complex vector spaces.

2. THE INTEGRAL EQUATION

We will begin by setting out the full differential equations for the secondary
resonator, which were introduced in pn2511, but we now include additional terms
for a series loss resistance, and for a number of feed arrangements. For a coil of
length h, we have

0 0 0
ZI(rt) =—  Cou(r)=V(r,t) —Cin(r)= (V(r,t)—V(h,t
S 1(r,1) Ceat() g5V ) = Cuonlr) 5 (V) = V(1 1)
Current gradient external capa:itance current toroid capaci‘;ance current
(2.1) n 5
_/ Cznt( )Bt( (T‘, t) - V(Sat)) ds
0
internal capagtance current
%V(a,t) -~ R@I(a,t) - / Mab 10
Voltage gradient Ohm s law self induced EMF
(2.2) d o
My(a) 2 Tpri(t) — / 5(b—n) dbV,(t)
0
S—— ~ ~ -
primary induced EMF series feed voltage
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where Cint(2,9), Cror(2), M(2,y), Mp(x), and Cegi(z,y) are the density functions
describing the distributed physical reactances of the resonator, as defined in pn2511,
and R,(z) is the resistance per unit length at the point z on the solenoid. In these
equations, and those to follow, z,y,r, s, a, and b, are position variables which range
0 to h. The first equation applies Kirchhoff’s law to every point on the coil to
obtain an expression of conservation of charge, and the second equation applies
Ohm’s law and the induction law to every point of the coil to obtain the voltage
gradient. We include terms in the voltage gradient to represent induction due to a
current I,,(t) in a coupled primary winding, acting through its distributed mutual
inductance function M (a), and we allow for a general series feed arrangment by
integrating a Dirac delta function placed at the feedpoint n of a series voltage V;(t),
If we integrate the current differential 2.1 along the coil, from the base at »r = 0 up
to a point r = z, we get,

I(z,t) =I(0,t) +/z §I(r,t)dr

:Ibase / Cewt 8t T t)

A Ctar(r) 5% (V(r,t) = V(h,t)) dr

(2.3)

where we use Ipqse (t) as an alias for the base current I(0,¢). This equation can be
re-arranged to give

I(l‘, t) =Ipase (t)

(2.4) _/0" {H(:c—r) (Cezt( ) + Cron(r / Con (1 5) >
+/0"Ctor(b)db6(r— )+/0 C,nt(s,r)ds}gtv(r’t)dr

in which H is the Heaviside function employed to extend the integration limits, ie

H(a)=1 if a>0

(2:5) 0 if a<=0

Now if we apply Kirchhoff’s law to the coil base, we find I,se is given by

N——r’
top feed

d
(2.6)  Ipase(t / Cowt(r (r,t)dr+ (G, + Cuop ) V(h,t) — Lz (t)

total external dlsplacement load current

where I,#(t) is an externally applied top feed current, if any. Using this expression
to eliminate Ip,se in 2.4, and rearranging a little, gives us

(2.7) I(z,t) = /Oh C(x,r)%V(r, t)dr + /Oh O(r — WGV (r,t) dr — I4(t)
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where the kernel function C(z,r) of the first integral is the capacitance density,

C(z,r) =H(r — 2)Coyzt(r)

+8(r—h) {ctop + / " Cron(®) db}
(2:8) —H(z-r {th / Cint(r,s) }
+ /Ow Cint(s,r)ds

We can simplify the notation considerably if we regard the current and voltage
functions I(z,t) and V(z,t) as vectors in an infinite dimensional vector space of
functions. Adopting a convention of writing operators with a hat symbol, we can
define two operators, C and C;*l, such that

h
Cf= / C(z,r)f(r,t)dr
(2.9) 0

X h
Gle/O o(r — h)Gif(r,t)dr

each of which operates on a voltage profile vector f. With the operator é, we
have a mathematical object which encapsulates the entire capacitive reactance of
the resonator, both the distributed and lumped parts together, so we’ll call C the
self-capacitance operator. G’l is an operator which describes the coupling of the
top-end load conductance to the resonator. If for some reason shunt conductance
is distributed along a particular coil, then the delta function in the kernel of Gy can
be replaced by the appropriate distribution function. We can use these operators
to rewrite 2.7 as

0
(2.10) I(z,t) = <6tC+Gl) V — Iz (1)
which shows how the two operators together transform a voltage distribution into
a current distribution. We will return to this equation shortly, but first we apply a

similar procedure to the voltage gradient of equation 2.2. Starting with integration
from the base up to a point r, we get

V(r,t) =V (0,t) / —V (a,t)d
—%ase RbI(O t)

/ Ry(a)I(a,t)da

(211) //Mab I(b,t)dbda
[ Mode o
—/0 /0 5(b — ) dbda V(t)
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where Ry, is the effective series resistance of the ground and Vjgse (t) is an arbitrary
base drive voltage. This integral, after a bit of manipulation, becomes

V(r,t) =Viase(t) — /Oh (6(a)Ry + H(r — a)Rs(a)) I(a,t) da

h r a
(2.12) _/ / M(b,a)db = 1(a,t) da
/M ﬁmw

_/0 /0 5(b — n) dbda Vy(t)

Just as we did for the current integral, we define two integral operators, which are
the duals of those in 2.9, as follows:

ﬁfz—/oh/OTM(b,a)db f(a,t)da

(2.13) A
Bf= —/ (6(a)Ry + H(r — a)Ry(a)) f(a,t) da
0
which gives us a self-inductance operator ﬁ, and the operator R which describes how
the resonator couples to the series loss resistances - the distributed Rs(a) and the
lumped ground circuit resistance Ry. Just as with the dual operator Gy, the delta
function in R can be replaced to accomodate any arbitrary extra series resistances.
Using these two operators, we can write 2.12 as

V(rt) = (gtL + R)
+ VI-)(LSC

(2.14)
/M da STy

—/O /0 5(b— n) dbda Vi (t)

We can now combine the integral expressions for current and voltage, to obtain a
single equation for the resonator. We choose to eliminate the voltages to get an
equation in the currents, but the following procedure can just as easily be applied
the other way round.

Substituting 2.14 into 2.10 to eliminate the coil voltages gives

0 A\ 4
+ (aC‘i‘Gl) 1‘/base(t)
(2.15) (DA A / d.
6tC+Gl ; Mp(a)da dtIp”(t)
- (ﬁé+é,)/ 8(b —n)dbda V,(t)
ot o Jo
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We can simplify this equation further by defining a uniform set of feed coupling
operators, as follows,

Upf = (%C’ + Gl) 1f(t) } Base feed
4]

o) G f = — (acﬂrél) /OTMp(a)da%f(t) } Primary feed

v“sfz—(%é’+él)/ / 0(b—mn)dbda f(t) } Series feed
o Jo

Gf =—1f(t) } Top feed

Each of these operators converts an applied drive current or voltage, as appropriate,
into a resonator current distribution, and in fact gives the current distribution in
the coil due to the drive signal alone, ie the coil current with the current due to
the coil’s reaction to it removed. We can summarise all possible feed arrangements
with the definition of a general feed, or forcing function

(2.17) 0(@,1) = B Tpase (t) + O Ipri(t) + VsV (t) + 0eLi5 (£)

so that, when we wish to talk about an arbitrary feed, we can just use v(z,t) and
the reader can take that to be any desired mix of the available options in 2.17. For
example, for a center-fed bipolar coil, we would use the forcing function

(2.18) v(z,t) = 6, V,(t) = (%é + G*,) /0 /Oa 8(b — h/2) dbda V,(t)

in which the delta function §(b — h/2) inserts the drive signal V,(¢) at the center of
the coil. We will often abbreviate v(z,t) as a vector v, and doing so, we can now
write 2.15 as

0 ~ A 0. =
19 revs (2046 (2rem):

and if we define an operator /i, such that

Af= (QC‘+G‘1> (%£+R) f

ot
(2.20) )
= (Zei+ 2 {ch+ i) +aR) s
CE ot ! !
we obtain a fundamental equation for the solenoid,
(2.21) I=v+ Al

Any current function I(z,t) supportable by the solenoid must be a solution of
this equation. Note that A and v are given by a particular resonator and drive
function, respectively. This equation provides a very concise description of the
system. It simply says that the resonator current distribution I is the sum of the
current distribution v due to the drive alone, plus the current AT induced through
the reaction of the coil to its own current. The operator A completely describes
the resonator, including its damping and the effects of termination load, so it’s
reasonable for us to refer to it as the solenoid operator. We’ll take a closer look at
this important operator in the next section.
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3. THE SOLENOID OPERATOR

Each of the terms in A is a spatial integral over the length of the coil, and in fact
equation 2.21 is an example of a Fredholm integral equation of the second kind.
We can write A explicitly as an integral, with

L (2 O (an A o
- Af= (8t20L+a{0R+G1L}+GzR> f

h
= [ s@.ar(@d
where the kernel function g(z,a) is the time dependent Green’s function

2 0
)@—K(a: a)at

in which the two real scalar functions of position, F' and K, are given by

F(z,a) //Cmtr, /Mbadbdsdr

—/ (Ceat(r) + Cior(r) / M (a, b) dbdr

(3.2) g(z,a) = F(z,a GiRs(a)

(3.3)
/ Cior(r / M (a,b) dbdr
+ (L Ctor (T) dr — Ctop) ‘/0 M((l, b) db
and
h
K(@,0) =Ry(@) [ (Coat(r) + Cron(r)) H(r — a) dr
— Rs(a) /h /h Cint(r,8)&(r, 8,a) ds dr
T 0
(34) " / " Clor () Ru@) H(a — r) dr
0

( Ctop / Ctor
+G,/ M(a, b) db
0

The function F(z,y), which is the kernel of the operator CL, is clearly a physical
constant for any given resonator and serves to describe the reactive coupling of the
coil to itself. F(z,y) is independent of the electrical termination arrangements and
is independent of the resonator’s loss. The damping of the coil is given by K (z,y),
which describes how the loss is distributed along the coil. The term in K with
coefficient GG} describes how the damping due to the load resistance is distributed
along the coil through the mutual inductance M, and because of this term, K is
not a constant for the resonator but varies with the termination conditions. K is
the kernel of the damping operator CR + G L.
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4. SOLUTIONS

We wish to determine I in 2.21, which is the response of the resonator to the
given drive function v. It is immediately clear that any such solution is not unique.
Suppose for example that a current distribution Iy is a solution to 2.21, ie

(4.1) I; =v+ Al

then we can generate other solutions - infinitely many - by adding to Iy a current
distribution ¢ which is an eigenfunction of the solenoid operator A. In fact we
can add to I; any linear combination of the eigenfunctions of A and still obtain a
current profile which satisfies the integral equation, ie an allowable current profile.
An eigenfunction ¢ of A is a vector which satisfies the homogeneous equation

(4.2) 6= A¢

which is the solenoid equation obtained when the drive is removed, ie v is set to zero,
so that the equation describes a free resonance of the solenoid. The current profile
vectors ¢ which satisfy this equation therefore correspond to the free resonances,
or normal modes, of the solenoid. The homogeneous equation therefore implies
that the current in an undriven resonator is strictly confined to being a linear
combination of these eigenfunctions - in other words a superposition of normal
modes. If we have a solution I to the current profile of the driven equation, then
we can add ¢ to it to form another solution,

(4.3) v+ Al +¢)=v+ Al + Ap=T; + Ap=1T; + ¢

and it is clear that any linear combination of different ¢ will also work in the above
equation.

Therefore, given a particular solution Iy of the forced response, the general
solution to the solenoid equation is

o«
(4.4) I=I;+> Anon
n=1
where the A,, are amplitude coefficients which must be chosen to match the initial
conditions. We now look at how to find the particular forced response solution I,
which depends on the driving function v.
We can rewrite the integral equation as

(4.5) 1-AI=v

where 1 is the identity operator in this vector space, which can be written in our
integral representation as

h
(4.6) 1) = / 5(z — a)f(a,1) da
0
Now the solution to 4.5 is obtained formally by applying an inverse operator to
both sides, as in
(4.7) I=@0-A4)""

All we need to do is to calculate this inverse operator, which is given by the series
expansion

(4.8) A-A ' =1+A+ A2+ 48%+...
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so that our solution is

o0
(4.9) I:U+AU+AQU+A3U+---=ZA"U

Writing this out explicitly in the integral formulation gives
(4.10)

h
Ia,t) = v(a,)+ [ go.ar)o(ar,0)dn

0
h h

+ [ gl@,az) [ glaza)oian, o) daydas
0 0
h h h

+/ g(x,a3)/ g(ag,ag)/ g(as,a1)v(a1,t) da; das das + ..
0 0 0

This suggests an iterative formulation for I, by setting

Vo =V
(4.11) ;
Up = Avn—l
so that
(412) I=’U0+1}1+U2+...

When v is well away from any eigenfunction, this series converges rapidly, requiring
only 2 or 3 terms to achieve good accuracy. In the vicinity of an eigenfunction, this
convergence is very slow, and problems with accumulation of numerical precision
errors occur before a satisfactory solution is reached. For practical computations a
direct solution of 4.5 by Gaussian elimination is fast and reliable, but the so-called
Neumann series 4.11 serves well to illustrate how the forcing function drives the
resonance.

If we put together the forced response and free resonant solutions, we end up
with a general solution for the solenoid current, under any conditions, which has
the form

(4.13) I= ifi"v + i)‘nd’n
n=0 n=0

forced response free resonance

so that the response of the coil, ie the current vector I, is the combination of the
forced response of the coil obtained by the action of the solenoid operator on the
drive current v, plus an arbitrary amount of free resonance, set by the amplitude
coefficients A,,, which are themselves chosen to match the initial conditions. Due to
the linearity of fl, the forced response can contain only those frequency components
which are present in the drive function v. The only other frequencies which can
appear in I are the free-resonant frequenmes ie those of the eigenfunctions ¢,, of
A. For any real solenoid, its operator A contains a damping term (the coefficient of
0/0t), and as a result, the free-resonance components of I will suffer an exponential
decay of their amplitudes. Therefore, regardless of the initial conditions, after a
sufficient time has elapsed, only the forced response component of I will remain.
Figure 5.1 shows a typical response of a resonator to a sinusoidal driving function
which begins at ¢ = 0. The initial transient response excites a free resonance,
and because the drive frequency is chosen so that it does not coincide with a free
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FIGURE 5.1. Forced response in the time domain

resonance, we see a beat envelope appear. After a number of cycles, the free
resonance has decayed (@ = 36) to leave only the forced response of the coil.

5. NORMAL MODES

A basic characteristic of the normal modes of all linear resonating systems is
that all parts of the resonator move with the same angular frequency, although
they may have different phases. Mathematically, this means that the eigenfunc-
tions are separable into a product of a spatial distribution function and a time
dependent function. Furthermore, in view of the damping term - the function
K(z,y) embedded in the solenoid operator, we expect the time dependent part of
the eigenfunction to contain an exponential decay term. Therefore we can expect
the general form of the eigenfunctions to be

(5.1) In(z,t) = R {I,(z)elrtem 1}

where w, is the angular frequency and «,, the decay rate of the nth eigenfunction,
which has a spatial amplitude and phase distribution given by the complex function
I, (xz). We will combine the exponents into a single complex frequency variable,

(5.2) Tn = jwn — Qn

Combining the angular frequency and the decay rate into a single complex quantity
like this allows us to treat both harmonic and exponential behaviour on an equal
footing - the utility of which will become apparent, and the reader may notice the
similarity to the variable of the Laplace transform. The eigenfunctions can also be
written as

(5.3) In(z,t) = % {fn(m)e%t + f:($)67:t}

where the addition of the conjugate cancels out the imaginary component, thus
achieving the desired projection to the real axis. The conjugate second term pro-
vides the negative frequency contributions, since

(5.4) v =—jw—a
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FIGURE 5.2. Landscape of det(A-1)

This conjugate or negative frequency term can also be thought of as describing a

wave travelling in the opposite direction along the solonoid to that represented by
the positive frequency term, with the two travelling waves being of equal amplitude
and conjugate phase, thus forming the standing wave expected of a self contained

resonance.

Differentiating the eigenfunction with respect to time gives

—~~~ —
= =
& &
5
e o~ e
KNS
& =
I Il
— —
-~ -~
53 53
N N
SO
D|Ra T.L
LS NES
—~
19
L0
N—r

The Green’s function - no longer time dependent, but now frequency specific,

becomes

F(z,a) — vK(x,a) — GiRs(a)

2
n

=7

g(maa37n)

(5.6)

so that the spatial part of each eigenfunction will satisfy

(5.7)

which we can write as

(5.8)

As with the more familiar case of a matrix equation, the eigenfunctions occur for
values of 7y, which cause the determinant of the above operator to be zero. It can
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be shown that the so called Fredholm determinant is given by the series
1 h
1-—= [ g(a,a;7,)da

//‘ g(ar,a1;7)  g(a1,as;vn) day das

g(az,a1;7m)  g(az,a2;vn)

1 h rh (alaalﬂ’n) g(alaa237n) g(alaa337n)
- g/ / / glaz,a1;v,)  glaz,a2;v7,) g(az,as;vn)| dai das, das
' ) g

g(as,ar1;vm)  g(as,az;vm) 9(as,as;yn)

The values of v, = jw, — a, for which the above series sums to zero provide
the angular frequencies w, and the decay rates a, = w,/(2Q,) for each of the
infinite number of free resonances. Figure 5.2 shows the landscape of det(A — 1)
by indicating which quadrant of the complex plane contains the determinant. The
normal modes occur at the points where all four quadrants meet - there are three
in the figure.

In practice, the functions F(z,y), K(z,y), and Rs(z) tend to become available
in matrix form, employing a finite number of dimensions, the number of which is
set by the spatial resolution at which the underlying reactance distributions are
available, typically from a few tens up to a few hundred. With the operator in
equation 5.8 in the form of a matrix with N dimensions, equating the determinant
to zero leads to a polynomial of degree 2NV in 7, the solutions of which determine
the first 2N eigenfunctions, which emerge as N conjugate pairs. We can see this
by writing 5.6 as
(5.10)

9(@,a;7) = (&* —w?)F(z,a) + aK(z,a) — GiRs(a) — jw (2aF (z,a) + K (z,a))

Since each imaginary term in the determinant also includes an w, the determinant
will have an odd power of w as a factor in its imaginary part, and all other terms
involving w appear as even powers. Therefore the zeroes of the determinant are
invariant to a change of sign of w and thus, given any solution to the characteristic
equation, its complex conjugate will also be a solution.

6. RESONANT PRIMARY COUPLING

We introduced in section 2 the coupling operator appropriate for a coupled pri-
mary feed. In most Tesla coil situations, the primary inductor is itself resonated
with a primary tank capacitance Cp. In this section we will look at how this lumped
primary resonator is coupled to the distributed secondary resonator.

For the resonator with a forced primary current Ip,;(t) we have the distributed
secondary current

(6.1) I =0I;+ Al

where ¢ is the time domain operator v, given in equation 2.16. The induced primary
voltage which results from this secondary current is

d
6.2) Vi / My (a) 5 (0, 8) da -+ Ly Ty (8) + ByTyra(t)

where R, is the primary circuit resistance and L, is the self inductance of the
primary, which we can take as lumped so long as the self resonant frequency of
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FIGURE 6.2. The first few normal modes of a primary-coupled resonator

the primary inductor is much higher than the frequencies we want to consider. We
have assumed the positive sign for the mutual inductance, which is the case when
the primary current has the direction, with respect to the winding sense, shown
in figure 6.1. If either the primary current or winding sense is reversed, the terms
involving Mj(a) in equations 2.2 and 6.2 take on the opposite sign. If the primary
inductor is resonated with a primary tank capacitance Cp, then we also have the
relationship

d

and substituting Vj,;(¢) from equation 6.2 into this gives
h o2 d? d
6q =G /0 My(a) 575 T(a,1) da — Cy Ty s Tori(®) = CyRy 2 Ti?)
=4l + PI,,;
where for convenience we have defined the two operators
h 62
af = —cp/ My(a) > f(a,t) da
0 ot

(6.5) ) 2 p
Pf= _CprWf(t) - CpRpEf(t)
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FIGURE 6.3. Landscape of det(AP-1)

We can see that the operators P and 4 perform the same role in the primary
resonator that A and ¢ do in the secondary resonator.

For the coupled resonators, this equation and equation 6.1 apply simultaneously,
which we can express by the matrix eigenvalue equation

I A o1
Ipm’ u P Ipri

(6.6)

If the integral equation for the isolated secondary is viewed as a coupled system of
an infinite number of harmonic resonators I(z,t), then all we have done is to add
one more resonator, which brings with it an additional degree of freedom which we
accomodate by extending the current vector I by an extra dimension in order to
represent the primary oscillator Ip,;(t).

The resonant modes represented by the eigenfunctions of 6.6 are now the coupled
resonances of the primary-secondary system, and will have the separable form

I

(6.7) n = et

Ipm’

n
where again, v, is the complex frequency jw — a of the nth mode, so that the
actions of the operators & and P on this particular eigenfunction are

h

(6.8) inf =—72Cp | Mpy(a)f(a)da

Writing 6.6 as
I

Ipr'i

(6.9)

~

A-1 %
o P-1

the normal modes occur with singular values of the determinant, ie when ~,, is such
that

(6.10) (15 - 1) (A - i) —inin =0
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The cross term 9,4, represents the primary-secondary coupling, and we can see
here that as this reduces to zero, the determinant factorises into the distinct free

resonances ‘fi — i‘ =0and |P-— 1‘ = 0 of the individual uncoupled resonators.

When the coupling term is non-zero, neither of the separate free resonances is a
zero of the determinant. It is worthwhile comparing 6.9 with the corresponding
equation obtained from two coupled lumped tuned circuits. It is left to the reader
to show that in this elementary case,

LsCs')’2 +CsRsy + 1 CSM’YQ
CpM~? L,Cpv* + CpRpyy +1

where the off-diagonal terms will both change sign if the sense of one of the windings
is reversed. If we set the individual resonances of the two circuits to the same
frequency by a suitable choice of one of the components, then we can make the
definitions

I,

(6.11) I

=0

1 1 L Wo L Wo .2\42
6.12 2 _ - - _ - . = 2. = 2P0 k2 _ .
( ) wO LpCp LsCs ) QS Rs 3 Qp Rp I LpLs )
which reduces the equation of the lumped case to
224+ A z41 M 2
(6.13) . ) Ll —o
I,% 2o r Tt 1|1,

where we have also made a change of coordinates to a normalised complex frequency
2z = v/wg. The characteristic polynomial is then

1 . 1
(6.14) (2 4+ 24+ 1)(22+ —2+1) - k%' =0
Qs Qp
If we compare this equation with 6.10 we can identify a distributed coupling coef-
ficient as an operator k£ which is the square root of the product of the two coupling
operators v and u, ie
4
(6.15) 2 = Lo,
Y
Techniques for finding the complex frequencies v, which satisfy 6.10 will be
described later, but given that they can be calculated, we can express any resonant
behaviour of the coupled system by a linear sum of the eigenfunctions, as in
I(.’L‘,t) — ~ Y
(J‘E%A"
n=

Iprz’

(6.16)

I_ (z) e'ynt}

Ipri n

with the corresponding voltage distribution given by equations 6.2 and 2.14. The
only degrees of freedom left to us are the complex mode amplitudes A,, and we must

choose these so that at ¢ = 0 the above expression delivers a set of instantaneous
voltages and currents

(6.17) {Lri(0), I(z,0), Vpri(0), V(z,0)}

which match a given set of starting conditions. Note that we need to specify both
the currents and the voltages in order to completely describe the instantaneous
state of the resonator. A typical set of initial conditions would be

(6.18) {0, 0, Viang, O}
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corresponding to an idle resonator armed with an initial primary charge CpViang-
The process by which 6.17 is decomposed into a set of mode amplitudes {v,},
which we shall look at in the next section, is the key to time domain modeling of
the resonator, because once this step is completed, the subsequent time evolution
of the resonator can be calculated trivially from 6.16.

7. MopAL DECOMPOSITION

Our task in this section is to show how the mode amplitudes A, are chosen to
match a set of initial conditions. Note that although we refer to initial conditions,
we could just as easily set the mode amplitudes to match a final or some interme-
diate state of the resonator. A general purpose set of initial conditions is set out in
6.17 and we want to find the complex amplitudes A,, which satisfy the simultaneous
equations

oo

,fm(t;to Z%{ I; n}
(7.1) - i
vl =i )

In practice, I(z, t), along with I,,(x), are available as column vectors with N compo-
nents resulting from a numerical determination of the solenoid operator to a spatial
resolution of N elements. The left hand side of 7.1 can be taken as a single column
vector of 2N+2 real numbers which describe the starting conditions. The column
vectors on the right hand side have the same number of dimensions. Typically N
may be around 200. We also usually want to restrict the number of eigenfunctions
to the first m, perhaps 10 or 20, modes. Since m < N + 1, the system 7.1 is under-
determined, meaning there are too few eigenfunctions available to exactly satisfy all
2N + 2 equations. Therefore we must apply some technique such as least squares
fitting in order to choose a set of {A,} which provide a best fit to the starting
conditions using the limited number m of available eigenfunctions. We’ll use the
following abbreviations

I(z,t)
Ipri (t) — . —
gl =10 k=128 +2
(7.2) Vori (t)(xt—o
__I(J;;) = ¢n(k)
Vpri

where we now use I(k) to refer to an element of the entire set of initial conditions,
rather than just a current. Our choice of a set {A,} results in an estimate of the
initial conditions I(k) given by

(7.3) T(k) = R{Auon(k)}
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and the least squares error resulting from this estimate is

IN+2
(7.4) X> =Y (I(k) = 9(k)* W (k)

k=1
The real weighting coefficients W (k) will be discussed later - for now the reader
can take them to be unity. Ideally we would like to find a set {\,} which gives a
zero x2, but we have only m eigenfunctions, rather than the N + 1 which would be
required for this. Therefore we must settle for minimising x2. This we can do by
choosing {\,,} so that x? is at a turning point with respect to variations of each of
the \,. By setting the m partial differentials of x? to zero, we get the set of m real
equations

2N +2
(7.5) 5O = Z 2(¥(k) — I(k))W(k)ag—/\(lfz)(L\j =0; j=1...m
k=1 J

for any complex variation d\; of the jth mode amplitude. Noting that

v
(7.6) OVE) 55, = Ry (k)oN}

O\
and remembering that ¥(k) and I(k) are both real, we can write 7.5 as
(7.7)

2N+2 2N+2
3%{5Aj D W(k)p; ()W (k) — 6N > I(k)qu(k)W(k)} =0; j=1...m
k=1 k=1

The second term on the left is just the weighted inner product of I and ¢;, which
we’ll abbreviate as
2N+2

(7.8) Ci= Y I(k)d;j()W (k)

C} is a complex scalar which measures the component of the initial conditions vector
I which lies in the direction of the jth eigenvector, or equivalently, the similarity
or correlation between the shape of the initial conditions distribution and that of
the mode j. Using this, our least squares minimisation condition becomes

2N+2
(7.9) R {5Aj D (k)¢ ()W (k) — 6)\,0,} =0; j=1...m
k=1

and for this to be true for any arbitrary variation of the A;, we must satisfy the m
complex conditions

2N+2

(7.10) > U(k)g; ()W (k)—C;=0; j=1...m

k=1
Expanding ¥(k) by 7.3, we get the necessary conditions on the \; themselves,

2N+2 m

(7.11) DY R (k) i)W (k)= Cj=0; j=1...m

k=1 n=1

If we take A; to have the real and imaginary components defined by

(712) )\j = aj +jbj
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we have
2N+2 m
(7.13) D > (@nR{dn(k)} — 0aS{dn (k) ;(R)W (k) = C; =0; j=1...m
k=1 n=1
If we define two matrices
2N+2 2N+2
(7.14) Bj, Z R{6n(k)}o; ()W (k) and Bj, = Y S{dn(k)}¢;(k)W (k)
k=1

we can write 7 .13 as
m

(7.15) > (anBj, —bnBj,) —C;=0; j=1...m

n=1
If we take the real and imaginary parts of 7.15 separately, we obtain a set of 2m
real simultaneous equations in the 2m variables a,, and b,,, which we can represent
by the matrix equation

(7.16)
R(BL) o R{BL) RBL) o RBL)||a| (RO
é}%{é;m} %{Bmm} —§R{B”1} —m{é;;m} . ~ m{(:zm}
S stEl sty st e T s(ay
\s{B 3o s{Bmm} _J{B Yo =SB Y | SO}

which is easily solved by Gaussian elimination to obtain the a, and b,,, from which
the complex mode amplitudes are given by 7.12. What we have done is to obtain
the unique set of mode amplitudes which come closest, in the sense of equation 7.4,
to the initial conditions at ¢ = 0. We have some control over the meaning of the
word closest, by virtue of the weighting coefficients W (k). If these were absent or
set to unity, we would have the situation that a 1 volt error in say, the top voltage,
would be considered just as serious by the least squares estimate as a 1 amp error
in the say, the base current, thus matching the top voltage to the initial conditions
to a much higher precision than the base current. We would rather have a roughly
equal precision at all points in the system, and we achieve this by choosing a set of
weighting coefficients which are inversely proportional to the square of the average
magnitudes of the available m modes. In other words
1 2
(7.17) W (k) Z;n:l G )] k=1...2N+2

is a suitable weighting to achieve a uniform precision throughout the resonator.

8. FINDING EIGENVALUES

In section 6, the integral equation describing the coupled primary-secondary
system was presented in the form of equation 6.9, reproduced here,
‘A -1 o |1

8.1 N
( ) i P-1 Ipri

=0

in which A is the solenoid operator of the secondary defined by equation 3.1, ¢
is the operator describing the coupling of the primary to the secondary defined
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by equation 2.16, P defined in 6.5 describes the primary self coupling and 4 gives
the coupling between the secondary and the primary. All of these operators, when
expressed in the frequency domain, are quadratic functions of the complex frequency
v, S0 equation 8.1 represents a quadratic eigenvalue problem. In order to solve for
the complex frequency =y, we need to put 8.1 into the form

(8.2) (’7292 +v01 + @0) =0

I
Ipri

where the © are matrices of operators acting on the column vector of complex

. The © matrices are given by

amplitudes ‘ 1

Lpni
& ©2 = ‘—Cp Iy J\ZL(a)f(a) “ ffré\ﬁia) “
(8.4) 0, = éR+OG,1i —hatGi fco’z”}z\ép(a) da
(8.5) 0 = ‘—Oi _01‘
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